AI Ethics Research Library.

Curated library with links to research papers and reports relevant to AI Ethics.

  • Gender Bias in Large Language Models across Multiple Languages

    In this work, We examine gender bias in LLMs-generated outputs for different languages. We use three measurements: 1) gender bias in selecting descriptive words given the gender-related context. 2) gender bias in selecting gender-related pronouns (she/he) given the descriptive words. 3) gender bias in the topics of LLM-generated dialogues. We investigate the outputs of the GPT series of LLMs in various languages using our three measurement methods. Our findings revealed significant gender biases across all the languages we examined.

  • Bias in Generative AI

    This study analyzed images generated by three popular generative artificial intelligence (AI) tools - Midjourney, Stable Diffusion, and DALLE 2 - representing various occupations to investigate potential bias in AI generators. Our analysis revealed two overarching areas of concern in these AI generators, including (1) systematic gender and racial biases, and (2) subtle biases in facial expressions and appearances.

  • Brazilian landscape with statue of jesus

    Online Misogyny Against Female Candidates in the 2022 Brazilian Elections: A Threat to Women's Political Representation?

    Technology-facilitated gender-based violence has become a global threat to women's political representation and democracy. Understanding how online hate affects its targets is thus paramount. We analyse 10 million tweets directed at female candidates in the Brazilian election in 2022 and examine their reactions to online misogyny.

  • Sad woman sitting in pink surroundings

    Angry Men, Sad Women: Large Language Models Reflect Gendered Stereotypes in Emotion Attribution

    Large language models (LLMs) reflect societal norms and biases, especially about gender. While societal biases and stereotypes have been extensively researched in various NLP applications, there is a surprising gap for emotion analysis. However, emotion and gender are closely linked in societal discourse. E.g., women are often thought of as more empathetic, while men's anger is more socially accepted. To fill this gap, we present the first comprehensive study of gendered emotion attribution in five state-of-the-art LLMs (open- and closed-source).